

NICROWELD 625

Electrodes MMA [SMAW]

Nickel alloys

CLASSIFICATION:	APPROVALS:	APPLICATION:
EN ISO 14172-A: E Ni 6625 (NiCr22Mo9Nb) DIN 1736: EL NiCr 20 Mo 9 Nb AWS A-5.11: E NiCrMo-3 W.Nr.: 2.4621		Power generation industry Hardfacing and repairing Constructions & Engineering Petrochemical and chemical industry

- A special electrode with an alloy core and an basic coating.
- For joining and cladding high-alloy and heat-resistant steels, as well as dissimilar joints, e.g. lowalloy steels with nickel- or copper-based steels.
- The austenitic deposit is ductile at both low and high temperatures.
- Resistant to scaling up to 1100°C and to low temperatures down to -196°C.
- Resistant to the effects of heated and hot chlorides, making it recommended for critical work in the shipbuilding industry.
- Operating temperature: -196°C to 500°C.

Application

For dedicated materials, dissimilar connections, cladding. Thermal shields, furnace equipment (scrubbers), gas turbine engine components, combustion chamber linings, chemical plant fittings, seawater specialty applications. In the aerospace industry (exhaust devices, fuel lines, heat exchanger housings). Numerous of applications in the nuclear industry (very low cobalt content). In general industry (tanks, heat exchangers, valves and fluid distribution systems, pipes). Waste disposal (reheaters), pulp and paper industry. Various fasteners, compensators, exhaust systems.

Base material

DIN	W.Nr.	Alloy	
X2 NiCrAlTi32-20	1.4558		
NiCr20TiAl	2.4631	80A	
NiCr23Mo16Al	2.4605	59	
NiCr22Mo6Cu	2.4618		
NiCr22Mo7Cu	2.4619	G-3	
NiCr20Ti	2.4630	75	
NiCr21Mo6Cu	2.4641		
NiCr20CuMo	2.4660	20	
NiCr20Ti	2.4951	75	
NiCr15Fe	2.4816	600	
LC-NiCu15Fe	2.4817	8	
NiCr23Fe	2.4851	601	
NiCr21Mo	2.4858	825	
X8Ni9	1.5662		
12Ni19	1.5680	2515	
GX9Ni5	1.5681		
X3CrNiN18-10	1.6907		
X3CrNiMoN18-14	1.6967		
X10NiCrAlTi32-20, X10NiCrAlTi32-21	1.4876	800	
X8NiCrAlTi32-21	1.4959	800H	
X1NiCrMoCu25-20-5	1.4539	904L	
X12 Ni5			

GX10Ni5		
NiCr22Mo9Nb	1.4856	625
X5NiCrAlTi31-20	1.4958	
X1CrNiMoCuN20-18-7	1.4547	F44

Typical chemical composition %

С	Si	Mn	Cr	Ni	Мо	Nb	Fe	
0,04	0,80	0,60	22,00	base	9,00	3,50	<6,00	

0,04 0,00 0,00 2.	2,00 base 9,00 5,50 <0,00				
Typical mechanical properties					
Yield strength Re [N/mm2]	>500				
Tensile strength Rm [N/mm2]	>750				
Elongation A5 [%]	>30				
Impact energy Kv [J]	>47 J (-196°C) /				
Hardness	app. 235HB after welding if a surge of about 400HB works /				
Coating type	basic				
Welding current	= + ~				
Welding positions					

Redrying 300°C / 1h

Additional description

The microstructure consists of solutionstrengthened high-nickel austenite with carbides. Maintain the lowest possible current values. Interpass temperature max $250[^{\circ}C]$. When welding super austenites, the inter-pass temperature should not exceed $100[^{\circ}C]$.

Welding parameters and packing

Ø	Length [mm]	Welding current [A]	Weight of packet [kg]	Weight of carton [kg]
2,5	300 /	65-100	1,0	6,0
3,2	350 /	90-130	1,0	6,0
4,0	350 /	120-170	1,0	6,0
5,0	450 /	170-240	1,0	6,0

METALWELD-FIPROM POLSKA spółka z o.o.

ul. Mikołajczyka 57, 41-200 Sosnowiec

+48 (32) 297 75 50 - 51

+48 (32) 297 75 88

export@metalweld.pl